1001100101

x310 Series

Stackable Access Switches

The Allied Telesis x310 Series Layer 3 stackable access switches offer an impressive set of features in a high-value package, ideal for applications at the network edge.

The Allied Telesis x310 Series provide a high performing and scalable access solution for today's networks. With a choice of 24-port and 48-port 10/100BASE-T versions with Gigabit uplinks, Power over Ethernet (PoE), plus the ability to stack up to four units, the x310 Series is perfect for demanding applications at the edge of enterprise networks.

Manageable

The x310 runs the advanced AlliedWare Plus™ fully featured Operating System delivering a rich feature set and an industry-standard Command Line Interface (CLI). The industry-standard CLI reduces training requirements and is consistent across all AlliedWare Plus devices, simplifying network management.

The built-in, web-based Graphical User Interface (GUI) is an easy-to-use and powerful management tool. With comprehensive monitoring facilities and the ability to view a virtual chassis as a single entity, the GUI is an essential part of network management.

Powerful network management

Meeting the increased management requirements of modern converged networks, Allied Telesis Management Framework (AMF) automates everyday tasks including configuration management. The complete network

can be managed as a single virtual device with powerful centralized management features. Growing the network can be accomplished with plug-and-play simplicity, and network node recovery is fully zero-touch.

Reliable

The x310 was designed with reliability in mind, to guarantee the continued delivery of essential services. With the ability to stack up to four devices, maintenance and reconfiguration do not affect network uptime.

Secure

Advanced security features protect the network from the edge to the core. Unprecedented control over user access is provided with Network Access Control (NAC), to mitigate threats to network infrastructure. This ensures the network is accessed only by known users and devices, as each user's adherence to network security policies is checked. Secure access can also be provided for guests.

A secure network environment is guaranteed, with powerful control over network traffic types, secure management options, and other multilayered security features built right into the x310 Series switches.

Future-proof

A future-proof network is ensured with the flexibility of the x310 Series, coupled with the ability to stack multiple units. All x310 models come with a comprehensive IPv6 feature set as standard, to ensure they are ready for future traffic demands.

ECO friendly

The x310 supports Energy Efficient Ethernet (EEE), which automatically reduces the power consumed by the switch whenever there is no traffic on a port. This sophisticated feature can significantly reduce your operating costs, by reducing the power requirements of the switch and any associated cooling equipment.

New Features

- ► ACLs for management traffic
- ► Active Fiber Monitoring

Key Features

VCStack

▶ Create a VCStack of up to four units with 4 Gbps of stacking bandwidth to each unit. Stacking links are connected in a ring so each device has dual connections to further improve resiliency. VCStack provides a highly available system where network resources are spread out across stacked units, reducing the impact if one of the units fails. Aggregating switch ports on different units across the stack provides excellent network resiliency.

Allied Telesis Management Framework (AMF)

▶ Allied Telesis Management Framework (AMF) is a sophisticated suite of management tools that provide a simplified approach to network management. Common tasks are automated or made so simple that the every-day running of a network can be achieved without the need for highly-trained, and expensive, network engineers. Powerful features like centralized management, auto-backup, auto-upgrade, auto-provisioning and auto-recovery enable plug-and-play networking and zero-touch management.

Ethernet Protection Switching Rings (EPSRing)

► EPSRing allows several x310 switches to form a protected ring capable of recovery within as little as 50ms. This feature is perfect for high performance and high availability in enterprise networks.

Industry-leading Quality of Service (QoS)

Comprehensive low-latency wire-speed QoS provides flow-based traffic management with full classification, prioritization, traffic shaping and min/max bandwidth profiles. Enjoy boosted network performance and guaranteed delivery of business-critical Ethernet services and applications. Time-critical services such as voice and video take precedence over non-essential services such as file downloads, maintaining responsiveness of Enterprise applications.

Loop protection

Thrash limiting, also known as rapid MAC movement, detects and resolves network loops. It is highly user-configurable - from the rate of

- looping traffic to the type of action the switch should take when it detects a loop.
- ▶ With thrash limiting, the switch only detects a loop when a storm has occurred, which can potentially cause disruption to the network. To avoid this, loop detection works in conjunction with thrash limiting to send special packets that the switch listens for. If a port receives a special packet, you can choose to disable the port, disable the link, or send an SNMP trap.

Power over Ethernet Plus (PoE+)

With PoE, a separate power connection to media endpoints such as IP phones and wireless access points is not necessary. PoE+ reduces costs and provides even greater flexibility, providing the capability to connect devices requiring more power (up to 30 Watts)—for example pan, tilt and zoom (PTZ) security cameras.

Link Layer Discovery Protocol – Media Endpoint Discovery (LLDP – MED)

▶ LLDP-MED extends LLDP basic network endpoint discovery and management functions. LLDP-MED allows for media endpoint specific messages, providing detailed information on power requirements, network policy, location discovery (for Emergency Call Services) and inventory.

Voice VLAN

▶ Voice VLAN automatically separates voice and data traffic into two different VLANs. This automatic separation places delay-sensitive traffic into a voice dedicated VLAN, which simplifies QoS configurations.

sFlow

SFlow is an industry standard technology for monitoring high speed switched networks. It provides complete visibility into network use, enabling performance optimization, usage accounting/billing, and defense against security threats. Sampled packets sent to a collector ensure it always has a real-time view of network traffic.

Dynamic Host Configuration Protocol (DHCP) Snooping

▶ DHCP servers allocate IP addresses to clients, and the switch keeps a record of addresses issued on each port. IP source guard checks against this DHCP snooping database to ensure only clients with specific IP and/or MAC address can access the network. DHCP snooping can be combined with other features, like dynamic ARP inspection, to increase security in layer 2 switched environments, and also provides a traceable history, which meets the growing legal requirements placed on service providers.

Optical DDM

Most modern optical SFP/SFP+/XFP transceivers support Digital Diagnostics Monitoring (DDM) functions according to the specification SFF-8472. This enables real time monitoring of the various parameters of the transceiver, such as optical output power, temperature, laser bias current and transceiver supply voltage. Easy access to this information simplifies diagnosing problems with optical modules and fiber connections.

UniDirectional link Detection

▶ UniDirectional Link Detection (UDLD) is useful for monitoring fiber-optic links between two switches that use two single-direction fibers to transmit and receive packets. UDLD prevents traffic from being sent across a bad link by blocking the ports at both ends of the link in the event that either the individual transmitter or receiver for that connection fails.

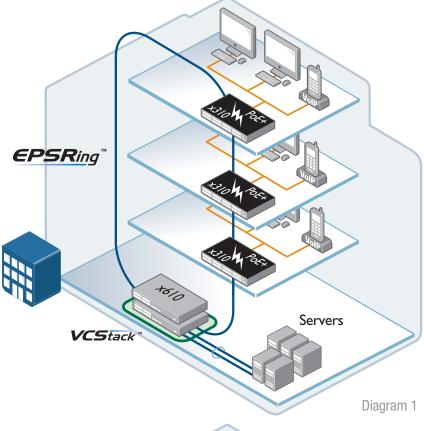
Tri-authentication

▶ Authentication options on the x310 Series also include alternatives to 802.1x port-based authentication, such as web authentication to enable guest access and MAC authentication for end points that do not have an 802.1x supplicant. All three authentication methods—802.1x, MAC-based and Web-based—can be enabled simultaneously on the same port. This is called tri-authentication.

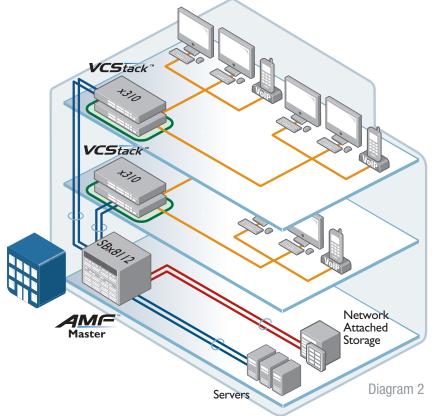
Access Control Lists (ACLs)

AlliedWare Plus delivers industry-standard Access Control functionality through ACLs. ACLs filter network traffic to control whether routed packets are forwarded or blocked at the port interface. This provides a powerful network security mechanism to select the types of traffic to be analyzed, forwarded, or influenced in some way.

Premium Software License


▶ By default, the x310 Series offers a comprehensive Layer 2 and basic Layer 3 feature set that includes static routing and IPv6 management features. The feature set can easily be elevated to full Layer 3 by applying the premium software license. This adds dynamic routing protocols and Layer 3 multicasting capabilities.

Key Solutions


Network convergence

The convergence of network services in the Enterprise has led to increasing demand for highly available networks with minimal downtime. Diagram 1 shows x310 PoE+ switches with high performance EPSRing connectivity to the x610 VCStack network core. This topology provides recovery in as little as 50ms, if required. PoE+ powers end points without the need for separate power feeds.

Network flexibility

Multiple x310 units can form a single virtual unit with VCStack, as shown in Diagram 2. This greatly simplifies management and provides a scalable and future-proof network. Management of the network is simple, since all SwitchBlade and x-series switches run the advanced AlliedWare Plus operating system, with an industry standard CLI.

NETWORK SMARTER

Product Specifications

PRODUCT	10/100BASE-T (RJ-45) COPPER PORTS	100/1000 COMBO UPLINK PORTS	1 GIGABIT Stacking Ports	POE CAPABLE PORTS	SWITCHING CAPACITY	FORWARDING RATE
AT-x310-26FT	24	2	2	-	56 Gbps	9.5 Mpps
AT-x310-50FT	48	2	2	-	156 Gbps	13.1 Mpps
AT-x310-26FP	24	2	2	24	56 Gbps	9.5 Mpps
AT-x310-50FP	48	2	2	48	156 Gbps	13.1 Mpps

Performance

- ▶ 4 Gbps of stacking bandwidth
- ► Supports 12KB Jumbo frames
- Wirespeed multicasting
- ▶ Up to 16K MAC addresses
- ▶ 512MB DDR SDRAM
- ▶ 64MB flash memory
- ► Packet Buffer memory: x310-26 1.5MB x310-50 - 3MB

Reliability

- ► Modular AlliedWare Plus operating system
- Full environmental monitoring of PSU, fans, temperature and internal voltages. SNMP traps alert network managers in case of any failure

Power Characteristics

- ► AC Voltage: 90 to 260V (auto-ranging)
- ► Frequency: 47 to 63Hz

Expandability

► Stackable up to four units in a VCStack

Flexibility and compatibility

- ► Gigabit SFP ports on x310 Series will support any combination of Allied Telesis 100Mbps and 1000Mbps SFP modules listed in this document under Ordering Information
- ► Port speed and duplex configuration can be set manually or by auto-negotiation

Diagnostic Tools

- ► Active Fiber Monitoring detects tampering on optical links
- ▶ Built-In Self Test (BIST)
- ► Cable fault locator (TDR)
- ► UniDirectional Link Detection (UDLD)
- ► Find-me device locator
- ► Automatic link flap detection and port shutdown
- ► Optical Digital Diagnostic Monitoring (DDM)
- ▶ Ping polling for IPv4 and IPv6
- Port mirroring
- ► TraceRoute for IPv4 and IPv6

IPv4 Features

- ▶ Black hole routing
- ► Directed broadcast forwarding
- ▶ DNS relay
- ► Equal Cost Multi Path (ECMP) routing
- ► Route redistribution (OSPF, RIP)
- ▶ Static unicast and multicast routes for IPv4
- ► UDP broadcast helper (IP helper)

IPv6 Features

- ▶ DHCPv6 client and relay
- ▶ IPv4 and IPv6 dual stack
- ▶ IPv6 hardware ACLs and QoS
- ► Device management over IPv6 networks with SNMPv6, Telnetv6 and SSHv6
- NTPv6 client and server
- ▶ Static unicast and multicast routes for IPv6

Management

- ► Front panel 7-segment LED provides at-a-glance status and fault information
- Allied Telesis Management Framework (AMF) enables powerful centralized management and zero-touch device installation and recovery
- ► Console management port on the front panel for ease of access
- ► Eco-friendly mode allows ports and LEDs to be disabled to save power
- ► Web-based Graphical User Interface (GUI)
- ► Industry-standard CLI with context-sensitive help
- ► Powerful CLI scripting engine
- Comprehensive SNMP MIB support for standardsbased device management
- ► Built-in text editor
- ► Event-based triggers allow user-defined scripts to be executed upon selected system events
- USB interface allows software release files, configurations and other files to be stored for backup and distribution to other devices

Quality of Service (QoS)

- 8 priority queues with a hierarchy of high priority queues for real time traffic, and mixed scheduling, for each switch port
- ► Limit bandwidth per port or per traffic class down to 64kbps
- Wirespeed traffic classification with low latency essential for VoIP and real-time streaming media applications
- ► Policy-based QoS based on VLAN, port, MAC and general packet classifiers
- ► Policy-based storm protection
- ► Extensive remarking capabilities
- ► Taildrop for queue congestion control
- Strict priority, weighted round robin or mixed scheduling
- ▶ IP precedence and DiffServ marking based on layer 2, 3 and 4 headers

Resiliency

 Control Plane Prioritization (CPP) ensures the CPU always has sufficient bandwidth to process network control traffic

- Dynamic link failover (host attach)
- Ethernet Protection Switched Rings (EPSR) with SuperLoop Protection (SLP) and enhanced recovery for extra resiliency
- ► Loop protection: loop detection and thrash limiting
- ► PVST+ compatibility mode
- ▶ STP root guard
- ▶ VCStack fast failover minimizes network disruption

Security

- ► Access Control Lists (ACLs) for IPv4 and IPv6 based on layer 3 and 4 headers
- ► Configurable ACLs for management traffic
- ► Auth-fail and quest VLANs
- Authentication, Authorisation and Accounting (AAA)
- Bootloader can be password protected for device security
- ▶ BPDU protection
- ► DHCP snooping, IP source guard and Dynamic ARP Inspection (DAI)
- ▶ DoS attack blocking and virus throttling
- ► Dynamic VLAN assignment
- ► MAC address filtering and MAC address lock-down
- Network Access and Control (NAC) features manage endpoint security
- ► Port-based learn limits (intrusion detection)
- Private VLANs provide security and port isolation for multiple customers using the same VLAN
- ► Secure Copy (SCP)
- ► Strong password security and encryption
- ► Tri-authentication: MAC-based, web-based and IEEE 802.1x

Environmental specifications

▶ Operating Temperature Range:

0°C to 40°C (32°F to 104°F) for AT-x310-26FT (fanless)

0°C to 50°C (32°F to 122°F) for AT-x310-26FP/50FP/50FT

Derated by 1°C per 305 meters (1,000 ft)

- ➤ Storage Temperature Range: -25°C to 70°C (-13°F to 158°F)
- Operating Relative Humidity Range: 5% to 90% non-condensing
- ➤ Storage Relative Humidity Range: 5% to 95% non-condensing
- Operating Altitude: 3.048 meters maximum (10.000 ft)

Electrical approvals and compliances

► EMC: EN55022 class A, FCC class A, VCCI class A

► Immunity: EN55024, EN61000-3-levels 2 (Harmonics), and 3 (Flicker) — AC models only

Safety

- Standards: UL60950-1, CAN/CSA-C22.2 No. 60950-1-03, EN60950-1, EN60825-1, AS/NZS 60950 1
- ► Certification: UL, cUL

Restrictions on Hazardous Substances (RoHS) Compliance

- ► EU RoHS Compliant
- ► China RoHS Compliant

Country of origin

▶ China

Physical specifications

PRODUCT	HEIGHT	WIDTH	DEPTH	MOUNTING	WEIGHT		
THODOOT					UNPACKAGED	PACKAGED	
AT-x310-26FT	44mm (1.73 in)	340mm (13.39 in)	215mm (8.46 in)	1RU Rack Mount	2.4 kg (5.3 lb)	3.6 kg (7.9 lb)	
AT-x310-50FT	44mm (1.73 in)	440mm (17.32 in)	310mm (12.21 in)	1RU Rack Mount	4.6 kg (10.2 lb)	6.1 kg (13.5 lb)	
AT-x310-26FP	44mm (1.73 in)	440mm (17.32 in)	360mm (14.17 in)	1RU Rack Mount	5.4 kg (11.9 lb)	6.9 kg (15.2 lb)	
AT-x310-50FP	44mm (1.73 in)	440mm (17.32 in)	360mm (14.17 in)	1RU Rack Mount	5.8 kg (12.8 lb)	7.3 kg (16.1 lb)	

Power characteristics

	NO POE LOAD			FULL POE+ LOAD			MAX POE	MAX POE	MAX POE+
PRODUCT	MAX POWER CONSUMPTION	MAX HEAT DISSIPATION	NOISE	MAX POWER CONSUMPTION	MAX HEAT DISSIPATION	NOISE	POWER	PORTS AT 15W PER PORT	PORTS AT 30W PER PORT
AT-x310-26FT	24W	81 BTU/hr	Fanless	-	-	-	-	-	-
AT-x310-50FT	48W	164 BTU/hr	33.4 dBA	-	-	-	-	-	-
AT-x310-26FP	50W	168 BTU/hr	38.2 dBA	460W	308 BTU/hr	60.0 dBA	370W	24	12
AT-x310-50FP	61W	209 BTU/hr	42.8 dBA	472W	349 BTU/hr	60.4 dBA	370W	24	12

Stan	darde	hne	Proto	cole
Stan	uarus	anu	PIOLO	COIS

AlliedWare Plus Operating System

Version 5.4.5-2

Authentication

RFC 1321 MD5 Message-Digest algorithm
RFC 1828 IP authentication using keyed MD5

Encryption

FIPS 180-1	Secure Hash standard (SHA-1)
FIPS 186	Digital signature standard (RSA)
FIPS 46-3	Data Encryption Standard (DES and 3DES)

Ethernet Standards

IEEE 802.1AXLink aggregation (static and LACP)

IEEE 802.2 Logical Link Control (LLC)

IEEE 802.3 Ethernet

IEEE 802.3adStatic and dynamic link aggregation

IEEE 802.3af Power over Ethernet (PoE)

IEEE 802.3at Power over Ethernet plus (PoE+)

IEEE 802.3azEnergy Efficient Ethernet (EEE)

IEEE 802.3u 100BASE-X

IEEE 802.3x Flow control - full-duplex operation

IEEE 802.3z 1000BASE-X

IPv4 Standards

RFC	791	Internet Protocol (IP)
RFC	792	Internet Control Message Protocol (ICMP)
RFC	826	Address Resolution Protocol (ARP)
RFC	894	Standard for the transmission of IP datagrams
		over Ethernet networks
RFC	919	Broadcasting Internet datagrams
RFC	922	Broadcasting Internet datagrams in the
		presence of subnets

RFC 932	Subnetwork addressing scheme
RFC 950	Internet standard subnetting procedure
RFC 951	Bootstrap Protocol (BootP)
RFC 1027	Proxy ARP
RFC 1042	Standard for the transmission of IP datagrams
	over IEEE 802 networks
RFC 1071	Computing the Internet checksum
RFC 1122	Internet host requirements
RFC 1191	Path MTU discovery
RFC 1256	ICMP router discovery messages
RFC 1518	An architecture for IP address allocation with
	CIDR
RFC 1519	Classless Inter-Domain Routing (CIDR)
RFC 1542	Clarifications and extensions for BootP
RFC 1812	Requirements for IPv4 routers
RFC 1918	IP addressing
IPv6 Sta	ndards
RFC 1981	Path MTU discovery for IPv6
RFC 2460	IPv6 specification
RFC 2464	Transmission of IPv6 packets over Ethernet
	networks

RFC 2460	IPv6 specification
RFC 2464	Transmission of IPv6 packets over Ethernet
	networks
RFC 3484	Default address selection for IPv6
RFC 3596	DNS extensions to support IPv6
RFC 4007	IPv6 scoped address architecture
RFC 4193	Unique local IPv6 unicast addresses
RFC 4291	IPv6 addressing architecture
RFC 4443	Internet Control Message Protocol (ICMPv6)
RFC 4861	Neighbor discovery for IPv6
RFC 4862	IPv6 Stateless Address Auto-Configuration
	(SLAAC)
RFC 5014	IPv6 socket API for source address selection
RFC 5095	Deprecation of type 0 routing headers in IPv6
RFC 5175	IPv6 Router Advertisement (RA) flags option
RFC 6105	IPv6 Router Advertisement (RA) guard

Management

RFC 2863

RFC 3164

RFC 3176

RFC 3411

AMF MIB and SNMP traps AT Enterprise MIB Optical DDM MIB SNMPv1, v2c and v3 IEEE 802.1ABLink Layer Discovery Protocol (LLDP) RFC 1155 Structure and identification of management information for TCP/IP-based Internets RFC 1157 Simple Network Management Protocol (SNMP) Concise MIB definitions RFC 1212 MIB for network management of TCP/IP-based RFC 1213 Internets: MIB-II RFC 1215 Convention for defining traps for use with the SNMP RFC 1227 SNMP MUX protocol and MIB RFC 1239 Standard MIR RFC 1724 RIPv2 MIB extension SNMPv2 MIB for IP using SMIv2 RFC 2011 RFC 2012 SNMPv2 MIB for TCP using SMIv2 SNMPv2 MIB for UDP using SMIv2 RFC 2013 RFC 2096 IP forwarding table MIB RFC 2578 Structure of Management Information v2 (SMIv2) RFC 2579 Textual conventions for SMIv2 RFC 2580 Conformance statements for SMIv2 RFC 2674 Definitions of managed objects for bridges with traffic classes, multicast filtering and VLAN extensions RFC 2741 Agent extensibility (AgentX) protocol RFC 2787 Definitions of managed objects for VRRP RMON MIB (groups 1,2,3 and 9) RFC 2819

Interfaces group MIB

sFlow: a method for monitoring traffic in switched and routed networks

An architecture for describing SNMP management frameworks

Syslog protocol

NETWORK SMARTER x310 Series | 5

RFC 3412	Message processing and dispatching for the	Open Shortest Path First (OSPF)			(authentication protocols (TLS, TTLS, PEAP, MD5)
	SNMP	OSPF link-lo			multi-supplicant authentication
RFC 3413	SNMP applications	OSPF MD5 a	authentication		(port-based network access control
RFC 3414	User-based Security Model (USM) for SNMPv3	Out-of-band	LSDB resync	RFC 2818	HTTP over TLS ("HTTPS")
RFC 3415	View-based Access Control Model (VACM) for	RFC 1245	OSPF protocol analysis	RFC 2865	RADIUS
	SNMP	RFC 1246	Experience with the OSPF protocol	RFC 2866	RADIUS accounting
RFC 3416	Version 2 of the protocol operations for the	RFC 1370	Applicability statement for OSPF	RFC 2868	RADIUS attributes for tunnel protocol support
	SNMP	RFC 1765	OSPF database overflow	RFC 3280	Internet X.509 PKI Certificate and Certificate
RFC 3417	Transport mappings for the SNMP	RFC 2328	OSPFv2		Revocation List (CRL) profile
RFC 3418	MIB for SNMP	RFC 2370	OSPF opaque LSA option	RFC 3546	Transport Layer Security (TLS) extensions
RFC 3621	Power over Ethernet (PoE) MIB	RFC 2740	OSPFv3 for IPv6	RFC 3579	RADIUS support for Extensible Authentication
RFC 3635	Definitions of managed objects for the	RFC 3101	OSPF Not-So-Stubby Area (NSSA) option		Protocol (EAP)
	Ethernet-like interface types	RFC 3509	Alternative implementations of OSPF area	RFC 3580	IEEE 802.1x RADIUS usage guidelines
RFC 3636	IEEE 802.3 MAU MIB		border routers	RFC 3748	PPP Extensible Authentication Protocol (EAP)
RFC 4188	Definitions of managed objects for bridges	RFC 3623	Graceful OSPF restart	RFC 4251	Secure Shell (SSHv2) protocol architecture
RFC 4318	Definitions of managed objects for bridges	RFC 3630	Traffic engineering extensions to OSPF	RFC 4252	Secure Shell (SSHv2) authentication protocol
	with RSTP	RFC 4552	Authentication/confidentiality for OSPFv3	RFC 4253	Secure Shell (SSHv2) transport layer protocol
RFC 4560	Definitions of managed objects for remote ping,	RFC 5329	Traffic engineering extensions to OSPFv3	RFC 4254	Secure Shell (SSHv2) connection protocol
	traceroute and lookup operations	111 0 0020	Traine originouring extensions to our 140	RFC 5246	TLS v1.2
RFC 6527	Definitions of managed objects for VRRPv3	Quality	of Service (QoS)	111 0 02 10	120 7 112
0 002.	Dominations of managed objects for thin to		Priority tagging	Service	•
Multica	st Support	RFC 2211		RFC 854	Telnet protocol specification
	louter (BSR) mechanism for PIM-SM	RFU ZZTI	Specification of the controlled-load network	RFC 855	Telnet option specifications
		DEC 0474	element service	RFC 857	Telnet echo option
IGMP query		RFC 2474	DiffServ precedence for eight queues/port		•
	ping (IGMPv1, v2 and v3)	RFC 2475	DiffServ architecture	RFC 858	Telnet suppress go ahead option
	ping fast-leave	RFC 2597	DiffServ Assured Forwarding (AF)	RFC 1091	Telnet terminal-type option
	multicast forwarding (IGMP/MLD proxy)	RFC 2697	A single-rate three-color marker	RFC 1350	Trivial File Transfer Protocol (TFTP)
	ing (MLDv1 and v2)	RFC 2698	A two-rate three-color marker	RFC 1985	SMTP service extension
	d SSM for IPv6	RFC 3246	DiffServ Expedited Forwarding (EF)	RFC 2049	MIME
RFC 1112	Host extensions for IP multicasting (IGMPv1)			RFC 2131	DHCPv4 (server, relay and client)
RFC 2236	Internet Group Management Protocol v2	Resilien	су	RFC 2132	DHCP options and BootP vendor extensions
	(IGMPv2)		MAC bridges	RFC 2616	Hypertext Transfer Protocol - HTTP/1.1
RFC 2710	Multicast Listener Discovery (MLD) for IPv6	IEEE 802.1s	Multiple Spanning Tree Protocol (MSTP)	RFC 2821	Simple Mail Transfer Protocol (SMTP)
RFC 2715	Interoperability rules for multicast routing	IEEE 802.1w	Rapid Spanning Tree Protocol (RSTP)	RFC 2822	Internet message format
	protocols	RFC 5798	Virtual Router Redundancy Protocol version 3	RFC 3046	DHCP relay agent information option (DHCP
RFC 3306	Unicast-prefix-based IPv6 multicast		(VRRPv3) for IPv4 and IPv6		option 82)
	addresses			RFC 3315	DHCPv6 client
RFC 3376	IGMPv3	Routing	Information Protocol (RIP)	RFC 3993	Subscriber-ID suboption for DHCP relay agent
RFC 3810	Multicast Listener Discovery v2 (MLDv2) for	RFC 1058	Routing Information Protocol (RIP)		option
	IPv6	RFC 2080	RIPng for IPv6	RFC 4330	Simple Network Time Protocol (SNTP) version 4
RFC 3956	Embedding the Rendezvous Point (RP) address	RFC 2081	RIPng protocol applicability statement	RFC 5905	Network Time Protocol (NTP) version 4
	in an IPv6 multicast address	RFC 2082	RIP-2 MD5 authentication		
RFC 3973	PIM Dense Mode (DM)	RFC 2453	RIPv2	VLAN S	upport
RFC 4541	IGMP and MLD snooping switches	111 0 2433	IIII VZ		Virtual LAN (VLAN) bridges
RFC 4601	Protocol Independent Multicast - Sparse Mode	0	_		VLAN classification by protocol and port
	(PIM-SM): protocol specification (revised)	Security			acVLAN tagging
RFC 4604	Using IGMPv3 and MLDv2 for source-specific	SSH remote	0	ILLL 002.00	zo v E n v tagging
	multipoet	SSLv2 and S	SLV3		

TACACS+ accounting and authentication

Voice over IP (VoIP) LLDP-MED ANSI/TIA-1057 Voice VLAN

Ordering Information

multicast

RFC 4607 Source-specific multicast for IP

Feature Licenses

NAME	DESCRIPTION	INCLUDES	STACK LICENSING
AT-FL-x310-01	x310 premium license	RIP (64 routes) OSPF (64 routes) PIMv4-SM, DM and SSM EPSR master RIPng (64 routes) OSPFv3 (64 routes) PIMv6-SM and SSM VRRP UDLD	One license per stack member

alliedtelesis.com 6 | x310 Series

Switches

AT-x310-26FT-xx

24-port 10/100BASE-T switch with 2 combo ports (100/1000X SFP or 10/100/1000T) and 2 stacking ports

AT-x310-50FT-xx

48-port 10/100BASE-T switch with 2 combo ports (100/1000X SFP or 10/100/1000T) and 2 stacking ports

AT-x310-26FP-xx

24-port 10/100BASE-T PoE+ switch with 2 combo ports (100/1000X SFP or 10/100/1000T) and 2 stacking ports

AT-x310-50FP-xx

48-port 10/100BASE-T PoE+ switch with 2 combo ports (100/1000X SFP or 10/100/1000T) and 2 stacking ports

Where xx = 10 for US power cord

20 for no power cord

30 for UK power cord

40 for Australian power cord

50 for European power cord

SFP modules

AT-SPFX/2

100FX multi-mode 1310nm fiber up to 2km

AT-SPFX/15

100FX single-mode 1310nm fiber up to 15km

AT-SPFXBD-LC-13

100BX Bi-Di (1310nmTx,1550nm Rx) fiber up to 10km

AT-SPFXBD-LC-15

100BX Bi-Di (1550nm Tx,1310nm Rx) fiber up to 10km

AT-SPSX

1000SX GbE multi-mode 850nm fiber up to 550m $\,$

AT-SPSX/I

1000SX GbE multi-mode 850nm fiber up to 550m industrial temperature

AT-SPEX

1000X GbE multi-mode 1310nm fiber up to 2km

AT-SPLX10

1000LX GbE single-mode 1310nm fiber up to 10km

AT-SPLXI0/1

1000LX GbE single-mode 1310nm fiber up to 10km industrial temperature

AT-SPBDI0-13

1000LX~GbE~Bi-Di~(1310nm~Tx,~1490nm~Rx)~fiber~up~to~10km

AT-SPBDI0-14

1000LX GbE Bi-Di (1490nm Tx, 1310nm Rx) fiber up to 10km

AT-SPLX40

1000LX GbE single-mode 1310nm fiber up to 40km

AT-SPZX80

1000ZX GbE single-mode 1550nm fiber up to 80km

AT-SP10TW1

1 meter SFP direct attach cable

AT-SP10TW3

3 meter SFP direct attach cable

AT-SP10TW7

7 meter SFP direct attach cable

Stacking cables*

AT-StackXS/1.0

1.0 meter copper stacking cable

*From software release 5.4.5 or later, Allied Telesis diect attach cables can also be used for stacking

NETWORK SMARTER

North America Headquarters | 19800 North Creek Parkway | Suite 100 | Bothell | WA 98011 | USA | T: +1 800 424 4284 | F: +1 425 481 3895 Asia-Pacific Headquarters | 11 Tai Seng Link | Singapore | 534182 | T: +65 6383 3832 | F: +65 6383 3830 EMEA & CSA Operations | Incheonweg 7 | 1437 EK Rozenburg | The Netherlands | T: +31 20 7950020 | F: +31 20 7950021