

x220 Series

Gigabit Edge Switches

The Allied Telesis x220 Series are fully-managed high-performing Gigabit Layer 3 switches. Integrated security features, plus 28 SFP or 48 Gigabit copper ports, make them the ideal choice for long-distance fiber or high-density copper connectivity at the edge of the network.

Overview

The x220-28GS features 24 x 100/1000X SFP slots and 4 x 100/1000X SFP uplinks to provided extended reach at the network edge in distributed environments. Secure data transfer is ensured with Allied Telesis Active Fiber Monitoring (AFM) preventing data eavesdropping on all short and long-distance fiber links.

The x220-52GT has 48 x 10/100/1000T RJ-45 copper ports and 4 x 100/1000X SFP uplinks. A comprehensive feature-set provides an excellent access solution for today's networks, with high performance Gigabit throughput.

Resilient

Allied Telesis Ethernet Protection Switched Ring (EPSRingTM) enables distributed network segments to have resilient high-speed access to online resources and applications, and provides continuous traffic flow even during unscheduled outages.

Powerful network management

Meeting the increased management requirements of modern converged networks, Allied Telesis Autonomous Management Framework™ (AMF) automates many everyday tasks including configuration management. The entire network can be managed as a single virtual device with powerful centralized management features. Growing the network can be accomplished with plug-and-play simplicity, and network node recovery is fully zero-touch.

AMF secure mode increases network security with management traffic encryption, authorization and monitoring.

Secure

Network security is guaranteed, with powerful control over all traffic types, secure management options, and other multi-layered security features built right into the x220 Series.

Network Access Control (NAC) gives unprecedented control over user access to the network, successfully mitigating threats to network infrastructure.

The x220 Series use 802.1x port-based authentication, in partnership with standards-compliant dynamic VLAN assignment, to assess a user's adherence to network security policies and either grant access or offer remediation. Tri-authentication ensures the network is only accessed by known users and devices. Secure access is also available for guests.

Malicious network attacks are prevented by a comprehensive range of features such as DHCP snooping, STP root guard, BPDU protection and Access Control Lists ACLs). Each of these can be configured to perform a variety of actions upon detection of a suspected attack.

Network protection

Advanced storm protection features include bandwidth limiting, policy-based storm protection and packet storm protection.

Network storms are often caused by cabling errors that result in a network loop. The x220 Series provides features to detect loops as soon as they are created. Loop detection and thrash limiting take immediate action to prevent network storms.

Key Features

- ► Allied Telesis Autonomous Management Framework[™] (AMF)
- ► Active Fiber Monitoring
- ► AlliedWare Plus operating system
- ► EPSRTM and G.8032 high-speed ring connectivity
- ▶ Management stacking
- ► Static routing and RIP
- ▶ DHCP snooping
- ► IEEE 802.1x/MAC/Web authentication support

Effortless management

The x220 Series runs the advanced AlliedWare Plus™ fully featured operating system, delivering a rich feature set and an industry-standard Command Line Interface (CLI). This reduces training requirements and is consistent across all AlliedWare Plus devices, simplifying network management.

The web-based Graphical User Interface (GUI) is an easy-to-use and powerful management tool, with comprehensive monitoring facilities.

Key Features

Allied Telesis Autonomous Management Framework™ (AMF)

- ► AMF is a sophisticated suite of management tools that provide a simplified approach to network management. Common tasks are automated or made so simple that the everyday running of a network can be achieved without the need for highly-trained, and expensive, network engineers. Powerful features like centralized management, auto-backup, auto-upgrade, auto-provisioning and auto-recovery enable plug-and-play networking and zero-touch management.
- AMF secure mode encrypts all AMF traffic, provides unit and user authorization, and monitors network access to greatly enhance network security.

Active Fiber Monitoring (AFM)

AFM prevents eavesdropping on fiber communications by monitoring received optical power. If an intrusion is detected, the link can be automatically shut down, or an operator alert can be sent

Ethernet Protection Switched Ring (EPSRing TM)

 EPSRing allows several x220 switches to form a protected ring capable of recovery within as little as 50ms. This feature is perfect for high availability in enterprise networks.

G.8032 Ethernet Ring Protection

- G.8032 provides standards-based high-speed ring protection, that can be deployed standalone, or interoperate with Allied Telesis EPSR.
- Ethernet Connectivity Fault Monitoring (CFM) proactively monitors links and VLANs, and provides alerts when a fault is detected.

Access Control Lists (ACLs)

➤ The x220 Series features industry-standard access control functionality through ACLs. ACLs filter network traffic to control whether packets are forwarded or blocked at the port interface. This provides a powerful network security mechanism to select the types of traffic to be analyzed, forwarded, or influenced in some way. An example of this would be to provide traffic flow control.

VLAN ACLs

 Simplify access and traffic control across entire segments of the network. ACLs can be applied to a VLAN as well as a specific port.

Easy To Manage

- The AlliedWare Plus operating system incorporates an industry standard CLI, facilitating intuitive manageability.
- With three distinct modes, the CLI is very secure, and the use of SSHv2 encrypted and strongly authenticated remote login sessions ensures CLI access is not compromised.

Storm protection

Advanced packet storm control features protect the network from broadcast storms:

- ► Bandwidth limiting minimizes the effects of the storm by reducing the amount of flooding traffic.
- ▶ Policy-based storm protection is more powerful than bandwidth limiting. It restricts storm damage to within the storming VLAN, and it provides the flexibility to define the traffic rate that creates a broadcast storm. The action the device should take when it detects a storm can be configured, such as disabling the port from the VLAN or shutting the port down.
- Packet storm protection allows limits to be set on the broadcast reception rate, multicast frames and destination lookup failures. In addition, separate limits can be set to specify when the device will discard each of the different packet types.

Loop protection

- ➤ Thrash limiting, also known as Rapid MAC movement, detects and resolves network loops. It is highly user-configurable—from the rate of looping traffic to the type of action the switch should take when it detects a loop.
- ▶ With thrash limiting, the switch only detects a loop when a storm has occurred, which can potentially cause disruption to the network. To avoid this, loop detection works in conjunction with thrash limiting to send special packets, called Loop Detection Frames (LDF), that the switch listens for. If a port receives an LDF packet, one can choose to disable the port, disable the link, or send an SNMP trap.

Spanning Tree Protocol (STP) Root Guard

STP root guard designates which devices can assume the root bridge role in an STP network. This stops an undesirable device from taking over this role, where it could either compromise network performance or cause a security weakness

Bridge Protocol Data Unit (BPDU) protection

BPDU protection adds extra security to STP. It protects the spanning tree configuration by preventing malicious DoS attacks caused by spoofed BPDUs. If a BPDU packet is received on a protected port, the BPDU protection feature disables the port and alerts the network manager.

Tri-authentication

▶ Authentication options on the x220 Series include alternatives to 802.1x port-based authentication, such as web authentication, to enable guest access and MAC authentication for end points that do not have an 802.1x supplicant. All three authentication methods—802.1x, MAC-based and Web-based—can be enabled simultaneously on the same port, resulting in tri-authentication.

TACACS+ Command Authorization

Centralize control of which commands may be issued by a specific user of an AlliedWare Plus device. TACACS+ command authorization complements authentication and accounting services for a complete AAA solution.

Optical DDM

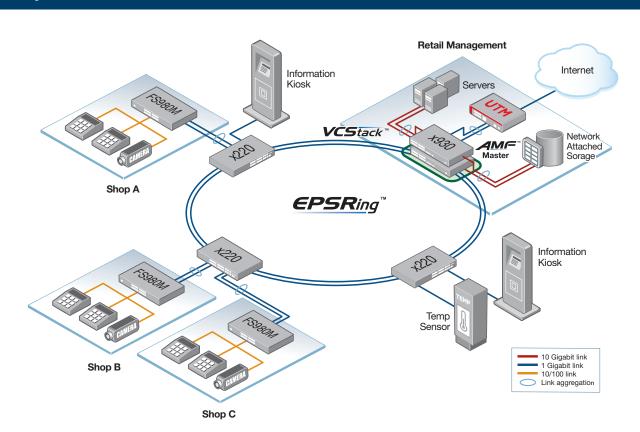
▶ Most modern optical SFP/SFP+/XFP transceivers support Digital Diagnostics Monitoring (DDM) functions according to the specification SFF-8472. This enables real time monitoring of the various parameters of the transceiver, such as optical output power, temperature, laser bias current and transceiver supply voltage. Easy access to this information simplifies diagnosing problems with optical modules and fiber connections.

VLAN Mirroring (RSPAN)

VLAN mirroring allows traffic from a port on a remote switch to be analysed locally. Traffic being transmitted or received on the port is duplicated and sent across the network on a special VLAN.

Find Me

► In busy server rooms comprised of a large number of equipment racks, it can be quite a job finding the correct switch quickly among many similar units. The "Find Me" feature is a simple visual way to quickly identify the desired physical switch for maintenance or other purposes, by causing its LEDs to flash in a specified pattern.


IPv6 Support

▶ With the depletion of IPv4 address space, IPv6 is rapidly becoming a mandatory requirement for many government and enterprise customers. To meet this need, now and into the future, the x220 Series supports IPv6 forwarding in hardware and features MLD snooping for efficient use of network bandwidth.

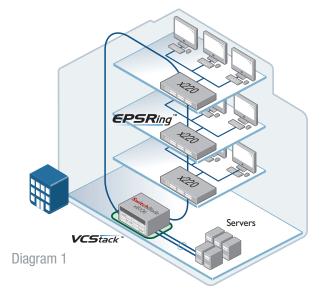
sFlow

sFlow is an industry-standard technology for monitoring high-speed switched networks. It provides complete visibility into network use, enabling performance optimization, usage accounting/billing, and defense against security threats. Sampled packets sent to a collector ensure it always has a real-time view of network traffic.

Key Solutions

Distributed retail network

The growth of large retail shopping complexes, and open-air malls (as shown in the diagram above) have increased the need for high-performing networks. The convergence of data from visitor information kiosks, monitoring sensors, security management and point of sale systems requires an extremely resilient solution.


The x220 Series supports Allied Telesis Ethernet Protection Switched Ring (EPSRing) to ensure distributed network segments have high-speed access to online systems. Continuous traffic flow is enabled with failover in a little as 50ms in the case of an unscheduled device outage or link failure.

With 28 SFP ports, the x220-28GS extends network reach to enable access connectivity right around the retail precinct, or similarly an education campus, manufacturing plant or large distributed business. All fiber links are kept secure with Active Fiber Monitoring, which detects attempted data eavesdropping and protects against intrusion.

To simplify and automate network management, Allied Telesis Autonomous Management Framework automatically backs-up the entire network, and provides plug-and-play network growth and zero-touch unit replacement.

Network convergence

The convergence of network services in the Enterprise has led to increasing demand for highly available networks with minimal downtime. Diagram 1 shows x220-52GT switches with high performance EPSR connectivity to the SwitchBlade x8106 core chassis. This topology provides recovery in as little as 50ms, if required.

x220 Series | Gigabit Edge Switches

Product Specifications

PRODUCT	10/100/1000T COPPER PORTS	100/1000X SFP PORTS	TOTAL PORTS	SWITCHING Fabric	FORWARDING RATE
x220-28GS	-	28	28	56Gbps	41.7Mpps
x220-52GT	48	4	52	104Gbps	77.4Mpps

Performance

- ▶ Up to 16K MAC addresses
- ► Routes: 16 (IPv4), 16 (IPv6)
- ▶ Up to 2K multicast entries
- ▶ 512MB DDR SDRAM
- ▶ 128MB flash memory
- ▶ 4094 configurable VLANs
- Packet Buffer memory: 1.5MB(28GS), 3MB(52GT)
- ► Supports 10KB jumbo frames
- ▶ Wirespeed forwarding

Reliability

- ▶ Modular AlliedWare Plus operating system
- Full environmental monitoring of PSU internal temperature and internal voltages. SNMP traps alert network managers in case of any failure

Flexibility and compatibility

 SFP ports will support any combination of 1000T, 100X, 100FX, 100BX, 1000X, 1000SX, 1000LX, 1000ZX or 1000ZX CWDM SFPs

Diagnostic tools

- Active Fiber Monitoring detects tampering on optical links
- ▶ Built-In Self Test (BIST)
- ► Find-me device locator
- ► Optical Digital Diagnostics Monitoring (DDM)
- ▶ Automatic link flap detection and port shutdown
- ▶ Ping polling for IPv4 and IPv6
- ► Port and VLAN mirroring (RSPAN)
- ► TraceRoute for IPv4 and IPv6

IP features

- ▶ IPv4 static routing and RIP
- ► DHCPv6 client
- ► Device management over IPv6 networks with SNMPv6, Telnetv6, SSHv6 and Syslogv6
- ▶ NTPv6 client and server

Management

- Allied Telesis Management Framework (AMF) enables powerful centralized management and zero-touch device installation and recovery
- ➤ Console management port on the front panel for ease of access
- ► Eco-friendly mode allows ports and LEDs to be disabled to save power
- ▶ Industry-standard CLI with context-sensitive help
- ▶ Powerful CLI scripting engine with built-in text editor
- USB interface allows software release files, configurations and other files to be stored for backup and distribution to other devices
- Comprehensive SNMP MIB support for standardsbased device management
- Management stacking allows up to 24 devices to be managed from a single console

 Event-based triggers allow user-defined scripts to be executed upon selected system events

Quality of Service (QoS)

- 8 priority queues with a hierarchy of high priority queues for real time traffic, and mixed scheduling, for each switch port
- Limit bandwidth per port or per traffic class down to 64kbps
- Wirespeed traffic classification with low latency essential for VoIP and real-time streaming media applications
- Policy-based QoS based on VLAN, port, MAC and general packet classifiers
- ► Policy-based storm protection
- ► Extensive remarking capabilities
- ► Taildrop for queue congestion control
- Strict priority, weighted round robin or mixed scheduling
- ▶ IP precedence and DiffServ marking based on layer 2, 3 and 4 headers

Resiliency

- Control Plane Prioritization (CPP) ensures the CPU always has sufficient bandwidth to process network control traffic
- Dynamic link failover (host attach)
- ► EPSRing (Ethernet Protection Switched Rings) with enhanced recovery for extra resiliency
- ► Loop protection: loop detection and thrash limiting
- PVST+ compatibility mode
- ► RRP snooping
- ▶ STP root guard

Security

- Access Control Lists (ACLs) based on layer 3 and 4 headers, per VLAN or port
- ► Configurable ACLs for management traffic
- ► Auth-fail and guest VLANs
- Authentication, Authorization and Accounting (AAA)
- Bootloader can be password protected for device security
- BPDU protection
- ► DHCP snooping, IP source guard and Dynamic ARP Inspection (DAI)
- Dynamic VLAN assignment
- ► MAC address filtering and MAC address lock-down
- Network Access and Control (NAC) features manage endpoint security
- ► Port-based learn limits (intrusion detection)
- Private VLANs provide security and port isolation for multiple customers using the same VLAN
- ► Secure Copy (SCP)
- Strong password security and encryption
- ► Tri-authentication: MAC-based, web-based and IEEE 802.1x
- ► RADIUS group selection per VLAN or port

Environmental specifications

- Operating temperature range:
 0°C to 50°C (32°F to 122°F)
 Derated by 1°C per 305 meters (1,000 ft)
- ➤ Storage temperature range: -25°C to 70°C (-13°F to 158°F) Operating relative humidity range: 5% to 90% non-condensing
- ➤ Storage relative humidity range: 5% to 95% non-condensing
- ➤ Operating altitude: 3,048 meters maximum (10,000 ft)

Electrical approvals and compliances

- ► EMC: EN55022 class A, FCC class A, VCCI class A
- ► Immunity: EN55024, EN61000-3-levels 2 (Harmonics), and 3 (Flicker) – AC models only

Safety

- Standards: UL60950-1, CAN/CSA-C22.2 No. 60950-1-03, EN60950-1, EN60825-1, AS/NZS 60050.1
- ► Certifications: UL. cUL. UL-EU

Restrictions on Hazardous Substances (RoHS) Compliance

- ► EU RoHS compliant
- China RoHS compliant

Standards and Protocols

AlliedWare Plus Operating System Version 5.4.9

Cryptographic Algorithms FIPS Approved Algorithms

Encryption (Block Ciphers):

- ► AES (ECB, CBC, CFB and OFB Modes)
- ▶ 3DES (ECB, CBC, CFB and OFB Modes) Block Cipher Modes:
- ► CCM
- ► CMAC
- ► GCM
- ► XTS

Digital Signatures & Asymmetric Key Generation:

- ▶ DSA
- ► ECDSA
- ► RSA
- Secure Hashing: SHA-1
- ► SHA-2 (SHA-224, SHA-256, SHA-384. SHA-512) Message Authentication:
- ► HMAC (SHA-1, SHA-2(224, 256, 384, 512) Random Number Generation:
- ► DRBG (Hash, HMAC and Counter)

x220 Series | Gigabit Edge Switches

Physical Specifications

PRODUCT	WIDTH X DEPTH X HEIGHT	MOUNTING	WE	IGHT	PACKAGED DIMENSIONS	
THODOUT	WIDTH A DEI TH A HEIGHT	MOONTING	UNPACKAGED	PACKAGED	TAURAGED DIMENSIONS	
x220-28GS	441 x 323 x 44 mm (17.36 x 12.72 x 1.73 in)	1RU Rack-mount	4.3 kg (9.47 lbs)	6.1 kg (13.45 lbs)	575 x 445 x 150 mm (22.64 x 17.52 x 5.90 in)	
x220-52GT	441 x 323 x 44 mm (17.36 x 12.72 x 1.73 in)	1RU Rack-mount	4.5 kg (9.92 lbs)	6.4 kg (14.12 lbs)	575 x 445 x 150 mm (22.64 x 17.52 x 5.90 in)	

Structure and identification of management

information for TCP/IP-based Internets

Power and Noise Characteristics 100-240 VAC, 50/60 Hz, 1.0A max

PRODUCT	MAXIMUM POWER CONSUMPTION	MAXIMUM HEAT DISSIPATION	NOISE
x220-28GS	52W	176 BTU/h	39 dBA
x220-52GT	47W	160 BTU/h	39 dBA

RFC 1155

Noise: tested to ISO7779; front bystander position

IEEE 802.3x Flow control - full-duplex operation

Non FIPS Approved Algorithms RNG (AES128/192/256) DES MD5	RFC 5014 IPv6 socket API for source address selection RFC 5095 Deprecation of type 0 routing headers in IPv6 RFC 5175 IPv6 Router Advertisement (RA) flags option IPv6 Router Advertisement (RA) guard
Ethernet	Management
IEEE 802.2 Logical Link Control (LLC)	AT Enterprise MIB including AMF MIB and SNMP traps
IEEE 802.3 Ethernet	Optical DDM MIB
IEEE 802.3ab 1000BASE-T	SNMPv1, v2c and v3
IEEE 802.3u 100BASE-X	IEEE 802.1ABLink Layer Discovery Protocol (LLDP)

IEEE 802.3z 1000BASE-X

ILLL 002.02	TOUGHAL A		information for 101711 based internets
		RFC 1157	Simple Network Management Protocol (SNMP)
IPv4 Fea	itures	RFC 1212	Concise MIB definitions
RFC 768	User Datagram Protocol (UDP)	RFC 1213	MIB for network management of TCP/IP-based
RFC 791	Internet Protocol (IP)		Internets: MIB-II
RFC 792	Internet Control Message Protocol (ICMP)	RFC 1215	Convention for defining traps for use with the
RFC 793	Transmission Control Protocol (TCP)		SNMP
RFC 826	Address Resolution Protocol (ARP)	RFC 1227	SNMP MUX protocol and MIB
RFC 894	Standard for the transmission of IP datagrams	RFC 1239	Standard MIB
	over Ethernet networks	RFC 1724	RIPv2 MIB extension
RFC 919	Broadcasting Internet datagrams	RFC 2578	Structure of Management Information v2
RFC 922	Broadcasting Internet datagrams in the		(SMIv2)
	presence of subnets	RFC 2579	Textual conventions for SMIv2
RFC 932	Subnetwork addressing scheme	RFC 2580	Conformance statements for SMIv2
RFC 950	Internet standard subnetting procedure	RFC 2674	Definitions of managed objects for bridges
RFC 1042	Standard for the transmission of IP datagrams		with traffic classes, multicast filtering and
	over IEEE 802 networks		VLAN extensions
RFC 1071	Computing the Internet checksum	RFC 2741	Agent extensibility (AgentX) protocol
RFC 1122	Internet host requirements	RFC 2819	RMON MIB (groups 1,2,3 and 9)
RFC 1191	Path MTU discovery	RFC 2863	Interfaces group MIB
RFC 1518	An architecture for IP address allocation with	RFC 3176	sFlow: a method for monitoring traffic in
	CIDR		switched and routed networks
RFC 1519	Classless Inter-Domain Routing (CIDR)	RFC 3411	An architecture for describing SNMP
RFC 1812	Requirements for IPv4 routers		management frameworks
RFC 1918	IP addressing	RFC 3412	Message processing and dispatching for the
RFC 2581	TCP congestion control		SNMP
		RFC 3413	SNMP applications
IPv6 Fea	itures	RFC 3414	User-based Security Model (USM) for
RFC 1981	Path MTU discovery for IPv6		SNMPv3
DEC 3460	IDv6 enacification	REC 3415	View-based Access Control Model (VACM)

		RFC 3413	SNMP applications
IPv6 Fea	atures	RFC 3414	User-based Security Model (USM) for
RFC 1981	Path MTU discovery for IPv6		SNMPv3
RFC 2460	IPv6 specification	RFC 3415	View-based Access Control Model (VACM)
RFC 2464	Transmission of IPv6 packets over Ethernet		for SNMP
	networks	RFC 3416	Version 2 of the protocol operations for the
RFC 2711	IPv6 router alert option		SNMP
RFC 3484	Default address selection for IPv6	RFC 3417	Transport mappings for the SNMP
RFC 3587	IPv6 global unicast address format	RFC 3418	MIB for SNMP
RFC 3596	DNS extensions to support IPv6	RFC 3635	Definitions of managed objects for the
RFC 4007	IPv6 scoped address architecture		Ethernet-like interface types
RFC 4193	Unique local IPv6 unicast addresses	RFC 3636	IEEE 802.3 MAU MIB
RFC 4213	Transition mechanisms for IPv6 hosts and	RFC 4022	MIB for the Transmission Control Protocol
	routers		(TCP)
RFC 4291	IPv6 addressing architecture	RFC 4113	MIB for the User Datagram Protocol (UDP)
RFC 4443	Internet Control Message Protocol (ICMPv6)	RFC 4188	Definitions of managed objects for bridges
RFC 4861	Neighbor discovery for IPv6	RFC 4292	IP forwarding table MIB
RFC 4862	IPv6 Stateless Address Auto-Configuration	RFC 4293	MIB for the Internet Protocol (IP)
	(SLAAC)	RFC 4318	Definitions of managed objects for bridges

with RSTP

Latency (microseconds)

PRODUCT	PORT SPEED			
PRODUCT	10MPS	100MBPS	1GBPS	
x220-28GS	39.6µs	6.8µs	3.8µs	
x220-52GT	35.1µs	5.5µs	2.6µs	

RFC 4560	Definitions of managed objects for remote
	ping, traceroute and lookup operations
RFC 5424	Syslog protocol

Multicast Support IGMP query solicitation

IGMP snooping (IGMPv1, v2 and v3) IGMP snooping fast-leave MLD snooping (MLDv1 and v2) RFC 2236 Internet Group Management Protocol v2 (IGMPv2) RFC 2715 Interoperability rules for multicast routing protocols RFC 3306 Unicast-prefix-based IPv6 multicast addresses RFC 4541 IGMP and MLD snooping switches

Quality of Service (QoS)

IEEE 802.1p	Priority tagging
RFC 2211	Specification of the controlled-load netwo
	element service
RFC 2474	DiffServ precedence for eight queues/por
RFC 2475	DiffServ architecture
RFC 2597	DiffServ Assured Forwarding (AF)
RFC 2697	A single-rate three-color marker
RFC 2698	A two-rate three-color marker
RFC 3246	DiffServ Expedited Forwarding (EF)

Resiliency Features

ITU-T G.8023 / Y.1344 Ethernet Ring Protection Switching (ERPS) IEEE 802.1ag CFM Continuity Check Protocol (CCP) IEEE 802.1AXLink aggregation (static and LACP) IEEE 802.1D MAC bridges IEEE 802.1s Multiple Spanning Tree Protocol (MSTP) IEEE 802.1w Rapid Spanning Tree Protocol (RSTP) IEEE 802.3ad Static and dynamic link aggregation

Routing Information Protocol (RIP)

RFC 1058	Routing information Protocol (RIP)
RFC 2080	RIPng for IPv6
RFC 2081	RIPng protocol applicability statement
RFC 2082	RIP-2 MD5 authentication
RFC 2453	RIPv2

Security Features

SSH remote login SSLv2 and SSLv3

TACACS+ Accounting, Authentication and Authorisation (AAA)

IEEE 802.1X authentication protocols (TLS, TTLS, PEAP and MD5)

IEEE 802.1X multi-supplicant authentication IEEE 802.1X port-based network access control RFC 2560 X.509 Online Certificate Status Protocol (OCSP)

x220 Series | 5 617-000639 RevC

x220 Series | Gigabit Edge Switches

RFC 2818	HTTP over TLS ("HTTPS")
RFC 2865	RADIUS authentication
RFC 2866	RADIUS accounting
RFC 2868	RADIUS attributes for tunnel protocol suppor
RFC 2986	PKCS #10: certification request syntax
	specification v1.7
RFC 3546	Transport Layer Security (TLS) extensions
RFC 3579	RADIUS support for Extensible
	Authentication Protocol (EAP)
RFC 3580	IEEE 802.1x RADIUS usage guidelines
RFC 3748	PPP Extensible Authentication Protocol (EAP)
RFC 4251	Secure Shell (SSHv2) protocol architecture
RFC 4252	Secure Shell (SSHv2) authentication protocol
RFC 4253	Secure Shell (SSHv2) transport layer protoco
RFC 4254	Secure Shell (SSHv2) connection protocol
RFC 5246	Transport Layer Security (TLS) v1.2
RFC 5280	X.509 certificate and Certificate Revocation
	List (CRL) profile
RFC 5425	Transport Layer Security (TLS) transport
	mapping for Syslog
RFC 5656	Elliptic curve algorithm integration for SSH
RFC 6125	Domain-based application service identity
	within PKI using X.509 certificates with TLS
RFC 6614	Transport Layer Security (TLS) encryption

Services

RFC 6668

OCI VICES	
RFC 854	Telnet protocol specification
RFC 855	Telnet option specifications
RFC 857	Telnet echo option
RFC 858	Telnet suppress go ahead option
RFC 1091	Telnet terminal-type option
RFC 1350	Trivial File Transfer Protocol (TFTP)
RFC 1985	SMTP service extension
RFC 2049	MIME
RFC 2131	DHCPv4 client
RFC 2616	HyperText Transfer Protocol - HTTP/1.1
RFC 2821	Simple Mail Transfer Protocol (SMTP)
RFC 2822	Internet message format
RFC 3315	DHCPv6 client
RFC 4330	Simple Network Time Protocol (SNTP)
	version 4
RFC 5905	Network Time Protocol (NTP) version

SHA-2 data integrity verification for SSH

for RADIUS

VLAN support

IEEE 802.1Q Virtual LAN (VLAN) bridges IEEE 802.1v VLAN classification by protocol and port IEEE 802.3ac VLAN tagging

Voice over IP

LLDP-MED ANSI/TIA-1057 Voice VLAN

Ordering Information

19 inch rack-mount brackets included

AT-x220-28GS-xx

28-port 100/1000X SFP switch

AT-x220-52GT-xx

48-port 10/100/1000T switch with 4 SFP uplink ports and single fixed PSU

Where xx = 10 for US power cord 20 for no power cord 30 for UK power cord 40 for Australian power cord 50 for European power cord

SFP modules

AT-SPFX/2

100FX multi-mode 1310 nm fiber up to 2 km

AT-SPFX/15

100FX single-mode 1310 nm fiber up to 15 km

AT-SPFXBD-LC-13

100BX Bi-Di (1310 nm Tx, 1550 nm Rx) fiber up to 10 km

AT-SPFXBD-LC-15

100BX Bi-Di (1550 nm Tx, 1310 nm Rx) fiber up to 10 km

AT-SPTX

1000T 100 m copper

AT-SPSX1

1000SX GbE multi-mode 850 nm fiber up to 550 m

AT-SPSX/I

1000SX GbE multi-mode 850 nm fiber up to 550 m industrial temperature

AT-SPEX

1000X GbE multi-mode 1310 nm fiber up to 2 km

AT-SPLX10

1000LX GbE single-mode 1310 nm fiber up to 10 km

AT-SPLXI0/I

1000LX GbE single-mode 1310 nm fiber up to 10 km industrial temperature

AT-SPBDI0-13

1000LX GbE Bi-Di (1310 nm Tx, 1490 nm Rx) fiber up to 10 km

AT-SPBDI0-14

1000LX GbE Bi-Di (1490 nm Tx, 1310 nm Rx) fiber up to 10 km

AT-SPLX40

1000LX GbE single-mode 1310 nm fiber up to 40 km

AT-SPZX80

1000ZX GbE single-mode 1550 nm fiber up to 80 km

AT-SPBD20-13/I²

1000BX GbE Bi-Di (1310 nm Tx, 1550 nm Rx) fiber up to 20 km

AT-SPBD20-14/I²

1000BX GbE Bi-Di (1490 nm Tx, 1310 nm Rx) fiber up to 20 km

AT-SPBD40-13/I

1000LX GbE single-mode Bi-Di (1310 nm Tx, 1490 nm Rx) fiber up to 40 km, industrial temperature

AT-SPBD40-14/I

1000LX GbE single-mode Bi-Di (1490 nm Tx, 1310 nm Rx) fiber up to 40 km, industrial temperature

Feature Licenses

NAME	DESCRIPTION	INCLUDES
AT-FL-x220-8032	ITU-T G.8032 license	► G.8032 ring protection ► Ethernet CFM

Allied Telesis

NETWORK SMARTER

North America Headquarters | 19800 North Creek Parkway | Suite 100 | Bothell | WA 98011 | USA | T: +1 800 424 4284 | F: +1 425 481 3895 Asia-Pacific Headquarters | 11 Tai Seng Link | Singapore | 534182 | T: +65 6383 3832 | F: +65 6383 3830 EMEA & CSA Operations | Incheonweg 7 | 1437 EK Rozenburg | The Netherlands | T: +31 20 7950020 | F: +31 20 7950021

¹The tri-speed AT-SPSX only supports Gigabit connectivity in the x220-28GS

² Only supports x220-28GS